Transference between Laguerre and Hermite settings
نویسندگان
چکیده
منابع مشابه
A Comparison Between Laguerre, Hermite, and Sinc Orthogonal Functions
A series of problems in different fields such as physics and chemistry are modeled by differential equations. Differential equations are divided into partial differential equations and ordinary differential equations which can be linear or nonlinear. One approach to solve those kinds of equations is using orthogonal functions into spectral methods. In this paper, we firstly describe Laguerre, H...
متن کاملIntegral representations for multiple Hermite and multiple Laguerre polynomials
converges. Random matrices with external source were introduced and studied by Brézin and Hikami [7, 8, 9, 10, 11], and P. Zinn-Justin [18, 19]. In what follows, we assume that A hasm distinct eigenvalues a1, . . . , am of multiplicities n1, . . . , nm. We consider m fixed and use multi-index notation ~n = (n1, . . . , nm) and |~n| = n1 + · · ·+ nm. The average characteristic polynomial P~n(x) ...
متن کاملMonogenic Generalized Laguerre and Hermite Polynomials and Related Functions
Abstract. In recent years classical polynomials of a real or complex variable and their generalizations to the case of several real or complex variables have been in a focus of increasing attention leading to new and interesting problems. In this paper we construct higher dimensional analogues to generalized Laguerre and Hermite polynomials as well as some based functions in the framework of Cl...
متن کاملHermite and Laguerre Polynomials and Matrix- Valued Stochastic Processes
Abstract We extend to matrix-valued stochastic processes, some well-known relations between realvalued diffusions and classical orthogonal polynomials, along with some recent results about Lévy processes and martingale polynomials. In particular, joint semigroup densities of the eigenvalue processes of the generalized matrix-valued Ornstein-Uhlenbeck and squared OrnsteinUhlenbeck processes are ...
متن کاملEigenvalues of Hermite and Laguerre ensembles: Large Beta Asymptotics
In this paper we examine the zero and first order eigenvalue fluctuations for the β-Hermite and β-Laguerre ensembles, using the matrix models we described in [5], in the limit as β → ∞. We find that the fluctuations are described by Gaussians of variance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. We also show that the approximation is very good, even for sma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2007.10.014